If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2-12t-60=0
a = 5; b = -12; c = -60;
Δ = b2-4ac
Δ = -122-4·5·(-60)
Δ = 1344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1344}=\sqrt{64*21}=\sqrt{64}*\sqrt{21}=8\sqrt{21}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-8\sqrt{21}}{2*5}=\frac{12-8\sqrt{21}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+8\sqrt{21}}{2*5}=\frac{12+8\sqrt{21}}{10} $
| -2(u+4)=6u-6+2(3u+7) | | -3(9u-1)+7u=-2(u+6) | | 20=4p+4 | | 2(6-x)=x(-3) | | 3b-9=-3 | | 17-2z=1 | | 4=k+-9 | | (6x+29)=(2x-9) | | (x+24)=(x+16) | | z/3+4=5 | | -v=3 | | c/2-8=-7 | | z/4+12=14 | | 17−2z=1 | | 4d+18=-2 | | -18x-16=-88 | | 41=33-r | | -19=k-4+ -17 | | 0=b+-5 | | -26=5x-8-x | | 1/7g-2=9 | | 2x-27=25. | | 400=(20-2x)(20-2x)x | | 74.77+89-35=x | | -5-8(1-6s)=30 | | 17-19x=x(2-3) | | −66=88-11b | | 3(x+2)=17x-4 | | X-12=45-x | | 16x+9x=32 | | 18x-2=-2+3x | | 4(2x-4)-5=3 |